The following article was sent to us by W. A. Clegg, Jr., 523 S.
Robert Street, Lima, Ohio 45804. The quote was taken from the guide
published for Sears in 1913, We thank Daniel L. Fapp, Jr., National
News Division, Sears, Roebuck and Company, Sears Tower, Chicago,
Illinois 60684 for permission to reprint same.
The gas and gasoline engines (they are exactly the same except
that one generates the gas it needs from gasoline, while the other
takes common illuminating gas. The use of gas or gasoline being
interchangeable on the same engine by readjustment of some of the
parts) are operated on a principle entirely different from steam.
While they are arranged very much as a steam engine, the power is
given by an explosion of gas mixed with air in the cylinder.
Instead of being a steady pressure like that furnished by steam, it
is a sudden pressure given to one end of the piston usually once in
four strokes or two revolutions, one stroke being required to draw
the gasoline in, the second to compress it, the third to receive
the effect of the explosion (this is the only power stroke). The
fourth to push out the burned gasses preparatory to admitting a new
charge. The fact that force is given the cylinder at such wide
intervals makes it necessary to have an extra heavy flywheel to
keep the engine steady, and the double cylinder engine which can
give a stroke at least every revolution is still better and is
indispensable when the flywheel cannot be above a certain
weight.
For small horsepowers, such as are required for pumping, feed
grinding, churning, etc. the gas engine is so much more convenient
and so very much cheaper in operation than the small steam engine
that it is safe to say that within a very few years the gas engine
will have completely displaced the small steam engine. In fact, the
discovery of the gas engine permits the same economies for the
small engine that the progress in steam engineering has made
possible for the large steam engine. As yet, the gas engine has
made little or no progress against the large steam plant, with its
Corliss engine, its triple expansion, its condenser and all the
other applicances which are not practicable with the small
engine.
COMPARISON OF STEAM AND GAS ENGINES
The following points prepared by an experienced farm engine
manufacturer will show clearly the advantages of the gas engine
over the steam engine for general use about a farm.
In the first place, the farmer uses power, as a rule, at short
intervals and also uses small power. Should he install a steam
engine and wish power for an hour or two, it would be necessary for
him to start a fire under the boiler and get up steam before he
could start the engine. This would take at least an hour. At the
end of the run he would have a good fire and good steam pressure,
but no use for it, and would have to let the fire die out and the
pressure run down. This involves a great waste of water, time, and
fuel. With a gasoline engine, he is always ready and can start to
work within a few minutes after he makes up his mind to do so and
he does not have to anticipate his wants in the power line for half
a day.
Again, the gasoline engine is as portable as a traction engine
and can be applied to all the uses of a traction engine and to
general farm use all the rest of the year. At little expense it can
be fitted up to hoist hay, to pump water, husk and shell corn, saw
wood and even by recent inventions to plowing. It is as good about
a farm as an extra man and a team of horses.
A gasoline engine can be run on a pint of gasoline per hour for
each horsepower and as soon as the work is done there is no more
consumption of fuel and the engine can be left without fear, except
for draining off the water in the water jacket in cold weather. A
steam engine for farm use would require at least four pounds of
coal per horsepower per hour, and in the majority of cases it would
be twice that, taking into consideration the amount of fuel
necessary to start the fire and that left unburned after the farmer
is through with his power. If you know the cost of crude gasoline
at your point and the cost of coal, you can easily figure the exact
economy of a gasoline engine for your use. To the economy of fuel
question may be added the labor or cost of pumping or hauling
water.
The only point wherein a farmer might find it advantageous to
have a steam plant would be where he is running a dairy and wished
steam and hot water for cleansing his creamery machinery. This can
be largely overcome by using the water from the jackets which can
be kept at a temperature of about 175 degrees, and if a higher
temperature is needed, he can heat it with the exhaust from the
engine. The time will certainly come soon when no farmer will
consider himself up to date until he has a gasoline engine.
Some persons unaccustomed to gasoline may wonder if a gasoline
engine is as safe as a steam engine. The fact is, they are very
much safer, and do not require a skilled engineer to run them. The
gasoline tank is usually placed outside the building, where the
danger from an explosion is reduced to a minimum. The only danger
that may be encountered is in starting the engine, filling the
supply tank when a burner near at hand is in flame, etc. Once a
gasoline engine is started and is supplied with gasoline, it may be
left entirely alone without care for hours at a time without danger
and without adjustment.
With a steam engine there is always danger, unless a highly
skilled man is watching the engine every moment. If the water gets
a little low, he is liable to have an explosion; if it gets a
little too high, he may knock out a cylinder head in his engine.
The fire must be fed every few minutes; the grates cleaned. There
is always something to be done about a steam engine.
So here is another point of great saving in a gasoline engine,
namely, the saving of one man’s time. The man who runs the
gasoline engine may give nearly all his time to other work, such as
feeding a corn sheller, a fodder chopper or the like.
Kerosene may also be used in the same way with special type of
gas engine.
The amounts of fuel required of the different kinds possible in
a gas engine are compared as follows by Roper: Illuminating gas, 17
to 20 cubic feet per horsepower per hour; Pittsburgh Natural Gas,
as low as 11 cubic feet; 74° gasoline, known as stove gasoline,
one-tenth of a gallon; refined petroleum, one-tenth of a
gallon.
If a gas producing plant using coal supplies the gas, one pound
of coal per horsepower per hour is sufficient on a large
engine.